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Stochastic resonance in a double quantum dot system
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Stochastic resonance (SR) is theoretically investigated for a double quantum dot system represented by two
discrete levels in respective wells. The system is driven by a periodic signal and a white noise source with
variable amplitude, and thus displays an improved output signal-to-noise ratio, a characteristic signature of SR.
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In recent years, phenomena such as time-dependent tun-
neling and stochastic resonance (SR) have received consid-
erable attention [1-3]. Calculation of tunneling time needed
for an electron to traverse a potential barrier was reported as
early as in the 1980s [4], and later on other works on time
dependence of tunneling using an effective Schrodinger
equation [5] and nonequilibrium Green’s function [6] were
reported. Since the pioneering work of Kramers [7] for po-
tential barrier crossing using thermal activation, the phenom-
enon of SR has become very relevant in a wide range of
scientific fields such as physics, chemistry, biology, climatol-
ogy, environmental sciences, etc. [1,2].

The recent developments in nanofabrication techniques
have provided artificial analog of atoms, molecules, and
crystals. Quantum dots (QDs) behave as artificial atoms [8],
and two strongly coupled QDs display properties of artificial
molecules [9]. Photon-assisted tunneling current through a
single quantum dot with an effectively continuous level spec-
trum was measured [10]. In another interesting work for the
double-dot system, the dc current measurement resolved the
resonances between energy levels of both the dots [11]. The
time-dependent resonant tunneling via two discrete states in
the double-dot system was investigated theoretically [12,13].
An important property of the mesoscopic quantum system
subjected to time-varying field is the spatial and temporal
coherence of their electronic states, which can give rise to
numerous interesting phenomena [14,15]. Very recently co-
herent signal amplification in bistable nanomechanical oscil-
lators and optical bistable system by stochastic resonance
were demonstrated [3]

In this work we consider a system of double QDs charac-
terized by only two nondegenerate and weakly coupled elec-
tronic levels with energies €, and €,. We further assume that
in the absence of any external perturbation the level 1 is
occupied and level 2 is empty. This manipulation can be
achieved by adjusting a bias voltage on the sample. Also,
coupling between two quantum dots is very weak so no tun-
neling of the electron takes place. Typically such a system is
represented by two discrete states in two different wells (Fig.
1), which is an ideal two-state system and is quite suitable
for studying the phenomenon of SR. The generic model of
SR describes the motion of a particle in a double-well
potential—a situation very much similar to the system under
consideration. The essence of SR phenomenon is counter-
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intuitive, i.e., adding a certain amount of noise to the input of
system can actually increase the output signal-to-noise ratio
(SNR) for a signal passing through the nonlinear medium,
and the optimal improvement occurs at a certain noise
strength. For the double-QD system, we concentrate on the
two states only and disregard other states that are allowed in
the neighborhood of resonance. The energies of resonant
states differ by €,=€,—€;. Also, under these conditions the
transport through the system via bias voltage and Coulomb
blockade tunneling is negligible. When a time-dependent
field E(r)=E, cos(wt) is applied via gate electrodes to the
dots (Ej is the amplitude, w is frequency), the on-site ener-
gies oscillate against each other [given by &(r), as defined
after Eq. (3)], which is the requirement for the SR.

The dynamical evolution of the two-state system with
resonant states |1) and |2) is governed by the following mas-
ter equation for the whole system statistical operator:

ap

i
=—_H L L 1
o ﬁ[ (0,p]+L,p+L,p, (1)

with the time-dependent tunneling Hamiltonian
H(t) = Hy(t) + H,, (1), (2)

in which H, is given by

1
Hy(t) = Ee(t)(|2><2| =11, 3)
and e(r)=¢€y+pE(r), E(f)=E, cos(wr) is the externally ap-
plied field and ¢ is constant such that g E(¢) has dimension of
energy. H,, introduces coupling between dots and causes
mixing of the states |1) and |2) of the system and is given by
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FIG. 1. Schematics of two quantum dots showing energy levels
in the respective potential well.
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where { is the coupling strength between the two dots. In Eq.
(1) £.,p is Liouville superoperator for reservoir tunneling and
L, p describes interdot electron relaxation. The term L.,p can
be negligible at the very weak-tunneling output leads, i.e.,
quantum dots are weakly coupled to the electron reservoirs.
Coulomb blockade suppresses the movement of electrons
through the double dot at low bias voltages. If one works
nearly at such conditions, then SR phenomenon could be
realized. Inclusion of L,p will essentially contribute to the
loss mechanism and should not disturb the SR phenomenon
when its magnitude is small.

It should be noted that the Liouvillian £.,,p is not always
needed to describe the effect of classical noise, but it can be
used in certain problems (a generalized approach, e.g., in
random phase-noise process) due to the fact that noise is
causing fluctuations in the system, and from the fluctuation-
dissipation theorem it will give rise to dissipation in the sys-
tem. The Liouvillian L,p contains both incoherent (rate-
dominated relaxation—caused by, say, classical noise)
dissipation as well as dissipation for coherent (oscillatory
dominated) tunneling. By the choice of parameters coherent
tunneling can be suppressed considerably, so the dominant
relaxation mechanism of L, p will be incoherent relaxation
rates. These rates are modulated due to the presence of a
periodic signal, as we will see in the following [Eq. (13)].
Physically, the Liouvillian L, p is describing the interaction
of a system with heat bath oscillators. The system loses its
excitation to heat bath oscillators (via microscopic interac-
tions: 2[5, (|2)(1])+H.c.]; where I;kéz are the bath opera-
tors, and hence L, p is explicitly given by Eq. (8.2.8) of Ref.
[16]), but acquires some equivalent random noise in the pro-
cess of dissipation (another manifestation of fluctuation-
dissipation theorem) [16]. The knowledge of the damping
coefficient leads to determine spectral function of statistical
fluctuations and the noise correlator. Thus in Eq. (1), L,p
provides a general method of microscopically modeling a
heat bath of infinite collection of harmonic oscillators, which
are interacting with the system and giving rise to dissipation
terms as explicitly mentioned in the following Eq. (5). For
very weak dissipative coherent tunneling, the L, p approach
is equivalent to modeling the interaction of the system with
classical noise through Langevin equation [16].

In order to describe the particle (electron) dynamics for
this two-state system one can use the rate-equation approach
(rate-dominated relaxation—caused by classical noise) as is
usually adopted to study the generic SR model. Since there is
a weak interaction between the dots, we use a density-matrix
(p) approach using master equation (1),

pii==T11p1 +Dopoy—i(Lp1a— ¢ pay),
p2==Topy+T1ip1y +i(Lpin—C pa).

P.lz =-Tpp—iet)pa—il(p1 = pr)s
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pa1 == T opoy +i€(D)py +il (p11 = p2a)s (5)

where p;; and p,, denote the probabilities for the particle
(electron) to be in the left and right dots, respectively, and
p1o=p,, are the off-diagonal density matrix elements. The
terms proportional to I'};(r) and I',,(¢) describe the transi-
tions to and from between the states |1) and |2), respectively.
We define I',(1)=[T"},(£)+T5,(¢)]/2. The potential consti-
tuted by the double dots has a double-well structure with
minima located at *x,,. The height of the potential barrier is
measured from the lower state |1) and is given by AV. In the
absence of coupling between dots, the first two equations
become decoupled from the remaining two and exactly
match with the two-state rate equations describing the ge-
neric SR phenomenon [1-3]. If one applies a Gaussian white
noise with zero mean and autocorrelation function,

(§(1)&(0)) =2D (1), (6)

then in the absence of periodic signal, the noise-induced hop-
ing between local equilibrium states will take place with
Kramers rate [1]

1

— expl - — |, 7
oo -2 )

where D is the noise strength. In the presence of a periodic
signal the relative separation of the states in the two wells
changes and the presence of appropriate (optimum) noise
strength causes random-switching frequency r, to agree
closely with the signal frequency w and the particle makes
the transition to the other state with higher probability.

In the absence of noise and the periodic signal, if the
interaction between dots ({) is small compared to €, the
electron is highly localized in one or the other potential well,
inhibiting any transition. On the other hand, if the system is
driven at a frequency (or subharmonic) corresponding to the
condition w=\°"6%+4§2, photon-assisted tunneling takes
place. We avoid this condition for the study of SR in the
following and perform a transformation [17] on the density-
matrix equations such that

P21 = P21 exp(—if dt’gaE(t')). )

By doing so the explicit time dependence is eliminated
(except in the transition rates) and the time dependence is
introduced in the interaction parameter of dots as

HOE éexp(if dt’ pE(t’)>, 9)

and the equation for the off-diagonal elements can be written
as

D1 =iy =T 1)1 +i (1) (p1y = p2a)s (10)

with p,;=(p;,)". The expansion of {(7) in the Fourier series
is given by
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[

(1) =¢ 2 T(pEyw)explinwr). (11)

n=—o0

In the weak-coupling limit of QDs and weak signal field, Eq.
(9) can be manipulated to obtain p,; in the lowest nonvan-
ishing order in ¢, and substituting that solution into the first
two equations of Eq. (5) we obtain

. dieyl)?
p11=—<F11(t)+F22(t)+ 2 =t )P11+F22(f)

W - 6(2) + F%2/4
2ieyll;

+———— 1+ ilJo(p% — p3)).
(1)2—620+F%2/4 Lolpi2— p2y)

dieyl)?

== | T (1) + Tp(1) + —————
P22 ( 11(1) 2(t) w2—620+f‘%2/4

)P22+r11(f)

2ienl)i

P idJo(p1y = p3).- (12)
Equations (12) are essentially the rate equations derived
from Eq. (5) under the assumption that { is small and the
interdot transition rates (Fij; i,j=1,2) are governed by the
noise only. For such noise-induced transition rates in the
presence of a periodically modulated signal we can assume

an Arrhenius-type function [1-3]

E
F”’zz(l‘)zrk exp(i (l})xm COS(wt)). (13)

For the weak modulation Eyx,,<<D and under adiabatic ap-
proximation,

2
1-‘11(1‘) +F22(I) = Zrk{l + %(E(}Dxm) COSZ(a)[) 4o :| .

(14)

Equation (I11) may now be integrated (assuming
len<w,I"},) and, to first order in field amplitude, we obtain

r = igo(pd; = pY))
2rk

paa(t:x0,10) = l e_zr"(l_to)(Pzz(to) -

rkE(}xm
- ————= cos(wry— ¢)>
DVw* + 4r£
+ Tk — igJO(pgl - P(l)z)
2I’k

+ ﬁcos((ut - (l)):| , (15)

where ¢=tan"!(w/2r;). The quantity p,,(t;xo,t,) represents
the conditional probability that x(7) is in state 2 at time f,
given that the state at time 7, was x, (which may be x,, or
—x,,). Retaining higher powers of E; in Eq. (13) leads to
higher harmonics in the power spectrum. One can obtain the
autocorrelation function as [17]
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(x(Ox(t + 7)|xg,10) = xfnp22(t + 71x,,,1) po(t]x0, 1)
- Xing(t + 7= x,,1) py 1 (t|x0, 1)
- xlznpll(t + T|xm’t)p22(t|x0vt0)

2
+ 2,011 (1 + 7= x,,, 1) p11 (t]x0,70) -
(16)
The term x;,p(t+7|=x,,.0)p11(t|xo. o) represents the situa-
tion that at #, the particle is at x; (note that the system takes
on the discrete values *x,, at all times), at ¢ it is at —x,,, and

at t+ 71t is at x,,. In the limit of 7,— —, the autocorrelation
function greatly simplifies to

(x(t + 1) xo.10) e

= x()x(t + 7))

:x2 e—ZrkT<1 _ gz‘]%(ngllm)z _ 4"%ng,2”
" ri D*(w* + 4ri)
ARE
X cos?(wt — + k=0m
(e "”) DY@ +477)
X{cos(w7) + cos[w(2t + 7) — 2]} (17)

The power spectrum is the Fourier transform of this autocor-
relation function. This function is ensemble averaged first
and then taken Fourier transform to give [17]

oo

{x(D)x(t+ D)), ™ dr

2 4§2J3(P(2)’1im)2 Zr/%E(z)xrzn 4ry
1- 2 T 20,2 2 2 2
ry DH(w” +4r,) ) \4r;+Q

(S(V),=

:_xm

233,
+D2(w2+4ri)[5(ﬂ+w)+5(0_(0)]’ (18)

where the ensemble average is defined as
® 27w
{x(D)x(t+ 7)), = ;Tf (x(0)x(t + 7))ds. (19)
0

One can also use S({2) as a one-sided t-averaged power spec-
trum in which S(Q) is defined for positive () only, i.e.,

(S()) = (S(Q)), + (S(- D)),

4275 (p5m?  2rE, 8ry
=\1- 2 T N2 2 2 2 2
r DH(w” +4r,) / \4r; +Q
47TrzE§x2
+ —"[8(Q - . 20
Do+ 4V§)[5( )] (20)

The spectrum contains two parts. The signal output (the last
term) is a & function at signal frequency. The broadband
noise output (first term) is a Lorentzian profile centered at
=0, which has three contributions: one with no signal, the
other due to an interaction between quantum dots, and the
last one representing correction due to signal on the noise.
The correction factor has the effect of an overall reduction of
the broadband noise power which is eventually transferred
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into the J-function spike. Thus the effect of the signal is to
transfer power from broadband noise to the J-function spike
and thus increase the signal-to-noise ratio. There is another
mechanism (proportional to J(z)) reducing the noise power be-
cause of very small but finite coupling between the two
quantum dots.

The signal-to-noise ratio in this situation is given by

ma | _SERAE__sige )
2D? ri DX + 4r,§)

(21)

The plot of R with respect to D is given in Fig. 2. Under the
assumption that the interaction ({) between dots is small, the
electron initially will be localized in one of the QDs and
hence p9;"~0, so the second term in large parentheses of
Eq. (20) will not contribute. From Fig. 2 we observe that for
very small D (compared to AV) the exponential terms falls to
zero rapidly so R is nearly zero. On the contrary, for very
large D, the exponential term reaches to 1 but the term D? in
the denominator makes R again zero. In the midway values
of D, there is the maximum situated near D~ AV. The
effect of an increase in the amplitude of the signal on R is
shown in curve B of Fig. 2.

To summarize, in this work we studied the phenomenon
of stochastic resonance in a system of weakly coupled quan-
tum dots driven by a weak signal and the Gaussian white
noise source and found the existence of a cooperative phe-
nomenon, i.e., incoherent noise power is feeding into coher-
ent signal. We have used a natural simplification of the
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D/AV

FIG. 2. Signal-to-noise ratio (R) as a function of normalized
noise amplitude (D/AV). Curves A and B are for two different
signal amplitudes (Egyx,,/AV) such that the amplitude in B is 1.5
times that of A.

double-well situation in terms of the discrete two-state sys-
tem. By providing modulating signal we vary the energy
levels in the two wells periodically rather than tilting the
potential wells, which is usually the case in the phenomenon
of SR. Under weak coupling between the two quantum dots,
as well as weak coupling to electron reservoirs, it is possible
to observe the phenomenon of SR in this system, which is
useful in quantum computing [18].
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